
On the renormalisation of the three-dimensional O(N) σ model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys. A: Math. Gen. 23 L467

(http://iopscience.iop.org/0305-4470/23/9/011)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 10:06

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/23/9
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A: Math. Gen. 23 (1990) L467-L471. Printed in the U K  

LETTER TO THE EDITOR 

On the renormalisation of the three-dimensional O( N )  
(T model 

J A Graceyt 
Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5 ,  Bern, Switzerland 
CH-3012 

Received 24 October 1989 

Abstract. The renormalisation constants for the O ( N )  U model in three dimensions are 
correctly computed within the large N expansion using dimensional regularisation. 

Three-dimensional U models and various four-fermi models (Rosenstein er a1 1989a, b) 
provide an interesting class of field theories which are perturbatively non-renormalis- 
able but which are renormalisable within the non-perturbative large-N expansion. 
Indeed the U models on O( N)  (Aref’eva 1977,1979, Rosenstein er al1989) and %P( N )  
(Aref’eva and Azakov 1980, Cant and Davis 1980), and its supersymmetric version 
(Aref’eva and Azakov 1980) have all been examined in great detail. Unlike their 
two-dimensional counterparts they possess a two-phase structure, where the critical 
coupling appears as a non-trivial zero of the p-function. In the lower phase the 
particles are massless and, in the case of O( N ) ,  the O( N )  symmetry is broken, whilst 
in the upper phase mass is gained through dynamical symmetry breaking and the 
symmetry is restored. Indeed in this upper phase, the three-dimensional models share 
essentially all the properties of two dimensions, except asymptotic freedom. As it is 
well known that Einstein gravity possesses non-renormalisable interactions, one may 
hope it could be rendered finite through some non-perturbative approach analogous 
to the large-N expansion. Current interest in three-dimensional nonlinear U models, 
though, is due to their relation to various statistical systems, such as models which 
describe ferromagnets, superconductors (Stanley 197 1) or superfluids (Aref’eva and 
Azakov 1980). I t  is known that the O ( N )  model is related to the Heisenberg model, 
and consequently scattering data has been used recently to fit to various three- 
dimensional U model parameters (Chakravarty er a1 1988, 1989). This has provided 
an interesting connection between theoretical models and experimental results. 

The initial work in understanding the three-dimensional U models from a field 
theory point of view, however, was carried out over a decade ago (Aref’eva 1977, 
1979). The large-N perturbation theory for the O ( N )  model was first constructed by 
Aref’eva (1977). It turns out, however, that there was an error in the explicit renormali- 
sation performed there. In particular, one graph was omitted from the vertex renormali- 
sation, and its absence would lead to a violation of the constraint, which ensures the 

t Present address: Research Institute for Theoretical Physics, Helsinki University, Siltavuorenpenger 20C, 
Helsinki, Finland SF-00170. 

0305-4470/90/090467+05$03.50 @ 1990 IOP Publishing Ltd L467 



L468 Letter to the Editor 

bosons lie on SN, at the quantum level. So it is the aim of this letter to (correctly) 
compute the next-to-leading-order renormalisation constants within the large-N 
expansion, using dimensional regularisation. This will give an explicit illustration of 
the general structure of the model which we will also relate to other models. 

First we recall the important features of the O( N) model which are relevant to our 
computation. The (bare) Lagrangian for the model is 

( 1 )  

where the Lagrange multiplier field, A ” ,  ensures the fields lie on the N-sphere, and in 
three dimensions the bare coupling, go, has dimensions of inverse mass. If one 
calculates at leading order in cut-off regularisation, and examines the expectation value 
of A, the p-function is deduced as (Aref’eva 1977), 

Lo = $(ano)’ - $Ao( n i  - l/go) 

where g ( p )  is the dimensionless renormalised coupling constant, and p is the renor- 
malisation scale. A phase transition occurs at ic = 4 ~ /  N. The lower phase consists of 
massless bosons, whilst in the upper phase, the bosons gain a mass p(1 -2Jg).  We 
will consider only the massive phase in the following. It possesses several features in 
common with the two-dimensional model, such as the development of a non-trivial 
propagator for the A field, which is deduced by inverting the A two-point function at 
leading order (Aref’eva 1977), i.e. 

2i 
NJ( k2) 

-~ 

where 

J(k2)= --(x) 1 4m2 ‘ I 2  t a n - ’ ( s ) ’ ”  
4T 

(3)  

(4) 

in three dimensions, and we work in Minkowski space throughout. In order to examine 
the renormalisation of ( l) ,  we introduce renormalised quantities and renormalisation 
constants for the upper phase via 

no = nZ, go = gz, A. = m’Z, i- AZA ( 5 )  

where the latter expression introduces the boson mass. As graphs with four and six 
boson legs are also superficially divergent, we ought to include the operators ( n2)2  and 
( n2)3 in the renormalised Lagrangian as counterterms. However, the presence of such 
terms would be incompatible with the quantised version of the constraint n 2  = l /g  
(Aref’eva 1979). This is preserved after quantisation because the Green functions 
involving only A fields as external legs are superficially divergent only when there is 
one A field. Thus A retains its role as a Lagrange multiplier after quantisation. This 
property was first observed by Aref’eva (1979). So (n2)*  and (n2)’ counterterms are 
excluded and we comment further on this later. For next-to-leading-order calculations, 
we use the dimensional regularisation procedure of Aref’eva (1977). This entails 
computing d-dimensional integrals, but using (3), which can be expanded in powers 
of ( m2/k2)”2,  to enable the ultraviolet structure of the various integrals to be computed. 
The renormalisation constants will subsequently involve simple poles in E, where 
d = 3 - 2E. 
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The graphs which we consider at next-to-leading order are illustrated in figures 
1-3, where the square blobs denote counterterms. The corrections to the boson 
propagator have been correctly computed by Aref’eva (1977), and we note 

4 ZJm=l+- (1-5) 
N P 2  E 

Z,=l------ 
3 Nn2 E 

where the latter was not computed explicitly. For the vertex renormalisation of figure 
2, we note that the second graph was omitted from the original analysis, and computing 
it, we find it is simply 

-5 I, I { J ( k 2 ) ( / ’  - m2)2[(I - k)’- m’]( k2 - m2)}-’ .  (7) 
N I  

The /-integration is simplified by using the cutting rule of Rim and Weisberger (1984), 
which is in effect a Gauss recursion relation for the hypergeometric function, but in 
three dimensions: 

i(k2 - 4m2) { ( I ’  - m 2 l 2 [ ( /  - k)‘- m2]}-’ = J(O) - ( d  - ~ ) J ( / c ~ )  (8) I, 
where the second term gives a finite contribution on completing the k-integration of 
(7). Thus with the additional divergent piece from the first graph of figure 2, we have 

4 

---Ga-- 
Figure 1. Boson propagator corrections. 

A 
Figure 2. Vertex corrections. 

k 

A 

(9) 

Fiiure 3. Vacuum expectation value of A. 
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from which it emerges that 

z, = z, (10) 

at this order. Of course, if the second graph of figure 2 is omitted, then (10) does not 
follow. However, (10) must occur because an n 2  counterterm, in addition to that which 
occurs due to the development of a non-zero vacuum expectation value for the A field, 
cannot be present for the same reason that ( n 2 ) 2  and ( n 2 ) 3  counterterms were excluded 
(Aref’eva 1979, Rosenstein et a/ 1989a) i.e. incompatibility with the constraint at the 
quantum level. Thus the model has only two independent renormalisation constants, 
and we note the two-dimensional model has a similar structure (Rim and Weisberger 
1984, Davis er a1 1989). 

Finally, as the renormalisation constant (9) differs from that of Aref’eva (1977), 
we must reconsider the corrections to the vacuum expectation value of A at next-to- 
leading order, since it occurs as a counterterm in the fifth graph of figure 3. Again 
the cutting rule ( 8 )  is used to simplify the fourth graph of figure 3. Thus we find, 

which differs from that obtained by Aref’eva (1977). 
We close with several comments. Firstly, we have correctly computed the renormali- 

sation constants of the model at next-to-leading order. We found only two independent 
renormalisation constants are required, consistent with Aref’eva (1979), Rosenstein et 
a/ (1989a). Secondly, we note the relation of our results with other three-dimensional 
models. In a similar calculation in the Gross-Neveu model, for instance, one finds 
the coupling constant renormalisation at next to leading order is Z,’ = 1 - 4 / ( 3 r 3 & )  
(Gracey 1990). A similar feature occurs in the two-dimensional models (Rim and 
Weisberger 1984, Davis er a1 1989), where, in dimensional regularisation, one finds 
In E type divergences in the coupling constant renormalisation, but they arise with 
differing signs in the two models. Accordingly such divergences are absent in the 
supersymmetric version (Davis et a/ 1989), since the O( N )  m and Gross-Neveu models 
are the boson and fermion sectors respectively. In three dimensions a similar feature 
occurs in the upper massive phase. Thus in dimensional regularisation, we have Z, = 1. 
An alternative way to view this is that in a cut-off regularisation of the supersymmetric 
model, the next-to-leading-order corrections to Z, would be linear in the cut-off, A 
only, and the ln(A2/m2) divergences, which correspond to simple poles in E ,  actually 
cancel. Finally, we note the next-to-leading-order corrections for ( 1 )  do not affect the 
general properties of the /3-function ( 2 ) .  It still retains a non-zero fixed point, which 
using cut-off regularisation, and a particular choice of renormalisation condition (Cant 
and Davis 1980) remains at g, = 4 ~ /  N. 
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